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Research

Significant individual variation exists in sys-
temic responses to xenobiotic exposures that 
may be due to individual differences in envi-
ronmentally responsive genes and pathways 
(Christiani et al. 2008). Sources of genetic 
variation include single-nucleotide polymor-
phisms (SNPs) that alter mRNA coding or 
expression (Hinds et al. 2006; McCarroll et al. 
2008), copy number variation (Conrad et al. 
2010), and altered patterns of CpG methyla-
tion and histone modifications that affect gene 
regulation and expression (Boks et al. 2009; 
Gibbs et al. 2010). Consequently, interin-
dividual genetic differences and other host 
factors can affect resistance or susceptibility 
to toxicity and disease (Adeyemo et al. 2009; 
de Geus et al. 2005; Glinskii et al. 2009). 
However, our knowledge of the basis for indi-
vidual differences in exposure, toxicity, and 
associated health effects and of the value of 
including information on individual genetic 
variation in exposure assessment models is 
limited.

Genetic association studies between 
individual genotypes and phenotypes within 
a population can be used to discover genetic 
variants that modulate exposure-related 
phenotypes. Most genetic association studies 
have evaluated disease end points using 

case–control study design (Collins 2009; 
Cordell and Clayton 2005; Suh and Vijg 
2005; Zondervan and Cardon 2007). Recent 
studies suggest that mapping intermediate 
steps in disease processes, that is, quantitative 
intermediate phenotypes (e.g., clinical traits, 
metabolites, gene transcript expression levels), 
may be more informative than estimating 
associations with discrete binary case–control 
disease status (Chen et al. 2008; Emilsson 
et al. 2008; Keller et al. 2008) because 
intermediate phenotypes may be more 
directly influenced by genetic variation. 
Instead of using binary outcomes, individual 
differences in systemic exposure levels (parent 
compound or metabolite) in a population of 
concurrently exposed individuals can serve as 
intermediate phenotype when investigating 
relationships between dose–response and 
individual susceptibility to toxicity and 
disease. Treating a biomarker of exposure 
as an intermediate phenotype could reduce 
bias due to exposure misclassification in case–
control status and increases power because 
dichotomization leads to loss of information, 
especially in exposure assessment studies.

I n t e r a c t i o n s  b e t w e e n  g e n e t i c 
a n d  e n v i r o n m e n t a l  f a c t o r s  a r e 
c r i t i c a l  t o  t o x i c i t y  a n d  d i s e a s e  

risk (Christiani et al. 2008; Vineis et al. 2009; 
Vlaanderen et al. 2010). Exposure assessment 
and epidemiology studies that use biomarkers 
of exposure and/or effect to reveal the 
exposure–disease relationships must account 
for interindividual variation. Identifying 
variation associated with individual genetic 
markers, such as SNPs as variance components, 
has the potential to provide mechanistic 
insight into toxicity and the etiology of disease 
and to inform efforts to set exposure limits 
and required interventions to reduce risk in 
susceptible individuals.

Previously, we demonstrated that fuel-
cell maintenance personnel who performed 
fuel-tank entry tasks had higher exposure to 
naphthalene via both dermal (Chao et al. 
2005) and inhalation routes (Egeghy et al. 
2003; Serdar et al. 2004) than did personnel 
who did not enter the fuel tanks. We also 
demonstrated that skin naphthyl–keratin 
adducts (NKAs) can be used as biomarkers 
for jet fuel exposure (Kang-Sickel et al. 2010, 
2011). Our goal was to develop an exposure 
assessment strategy to resolve the impact of 
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Background: Individual genetic variation that results in differences in systemic response to xenobi-
otic exposure is not accounted for as a predictor of outcome in current exposure assessment models.

oBjective: We developed a strategy to investigate individual differences in single-nucleotide poly-
morphisms (SNPs) as genetic markers associated with naphthyl–keratin adduct (NKA) levels mea-
sured in the skin of workers exposed to naphthalene. 

Methods: The SNP-association analysis was conducted in PLINK using candidate-gene analysis 
and genome-wide analysis. We identified significant SNP–NKA associations and investigated the 
potential impact of these SNPs along with personal and workplace factors on NKA levels using a 
multiple linear regression model and the Pratt index.

results: In candidate-gene analysis, a SNP (rs4852279) located near the CYP26B1 gene contrib-
uted to the 2-naphthyl–keratin adduct (2NKA) level. In the multiple linear regression model, the 
SNP rs4852279, dermal exposure, exposure time, task replacing foam, age, and ethnicity all were sig-
nificant predictors of 2NKA level. In genome-wide analysis, no single SNP reached genome-wide sig-
nificance for NKA levels (all p ≥ 1.05 × 10–5). Pathway and network analyses of SNPs associated with 
NKA levels were predicted to be involved in the regulation of cellular processes and homeostasis.

conclusions: These results provide evidence that a quantitative biomarker can be used as an inter-
mediate phenotype when investigating the association between genetic markers and exposure–dose 
relationship in a small, well-characterized exposed worker population.
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individual genetic variation, along with per-
sonal and workplace factors, on measured 
biomarker levels in a small, well-characterized 
worker population exposed to naphthalene in 
a complex mixture (jet fuel). We also inves-
tigated the biological relevance of significant 
SNP-associated genes using pathway and net-
work analysis to evaluate the impact and plau-
sibility of individual variants on the observed 
biomarker level.

Methods
Study population. Exposure data were avail-
able for U.S. Air Force (USAF) personnel 
exposed to jet propulsion fuel 8 (JP-8) at six 
USAF bases in the continental United States 
(Chao et al. 2005, 2006; Egeghy et al. 2003). 
Participants were recruited from active-duty 
personnel who routinely worked with or were 
exposed to JP-8, and all participants provided 
informed consent. Approval for human sub-
ject use was obtained from the institutional 
review board for the USAF and for each of the 
participating institutions, and the study com-
plied with all applicable U.S. requirements 
and regulations.

Of the 339 workers enrolled in the over-
all project, 105 USAF fuel-cell maintenance 
workers who were monitored for both der-
mal and inhalation exposure were included 
in the present study. Questionnaires were 
collected after a work shift to obtain data on 
demographic factors, including job tasks, use 
of personal protective equipment, smoking 
status, and other work-related factors. A diary 
for each worker was recorded during the sur-
veys by the research staff, including detailed 
information on work tasks and durations. 
Participants included those who entered the 
plane’s fuel cell and performed maintenance 
tasks, including tank door, bolt, and/or foam 
removal; foam replacement; fuel-tank clean-
ing; depuddling; and repairs and inspections 
(referred to as entrants). We also included 
attendants and runners who worked outside 
the fuel tank to assist entrants and other field 
workers who performed maintenance with 
occasional contact with JP-8 fuel. 

Measurements of dermal exposure. We used 
naphthalene as an exposure marker for jet fuel 
(Chao et al. 2005, 2006). Dermal exposure to 
naphthalene was quantified using samples from 
three exposed body regions of each worker after 
the work shift as described previously by Chao 
et al. (2005). Samples were collected using 
adhesive tape strips (Cover-Roll™; Beiersdorf 
AG, Hamburg, Germany). 

Skin naphthyl–keratin adduct sampling 
and analysis. Tape-strip samples were collected 
from each worker as described for dermal 
naphthalene exposure and quantified for 
four different NKAs using an enzyme-linked 
immunosorbent assay (Kang-Sickel et al. 
2008, 2010). The total 1-naphthyl–keratin 

adduct (1NKA) levels were calculated by 
summing the 1-naphthyl-keratin-1 and 
1-naphthyl-keratin-10 levels, whereas total 
2-naphthyl–keratin adduct levels (2NKA) 
were calculated by summing the 2-naphthyl-
keratin-1 and 2-naphthyl-keratin-10 levels. 
The total NKA (TNKA) level for each worker 
was calculated by summing the four keratin-
normalized adduct levels. 

Genotyping. Genomic DNA isolated from 
peripheral blood was used to genotype each 
worker using the GeneChip® Human Mapping 
250k StyI SNP array (Affymetrix, Santa Clara, 
CA) according to the manufacturer’s protocol. 

Among 105 individuals, 3 were excluded 
because of low genotype rate (missing genotype 
rate > 10% per person). In addition, 28,445 
markers with low genotype rate (missing 
genotype per SNP > 10%), 18,744 SNPs with 
< 1% minor allele frequency (MAF < 0.01), 
and 4,840 SNPs with Hardy-Weinberg 
departure (p < 0.001) along with the X 
chromosome were also excluded. The average 
call rate was 98.1%.

Statistical analyses. Descriptive statistics 
were derived using SAS (version 9.2; SAS 
Institute Inc., Cary, NC). We performed asso-
ciation analyses between SNP alleles and total 
1NKA levels, total 2-naphthyl–keratin adduct 
(2NKA) levels, and total NKA (TNKA; 
the sum of 1NKA and 2NKA) levels using 
PLINK, version 1.06 (Purcell et al. 2007). 
PLINK is a free, open-source whole genome-
wide association analysis tool set that allows the 
use of either asymptotic (likelihood ratio test 
and Wald test) or empirical significance val-
ues (permutation). PLINK also allows adjust-
ment for multiple covariates when testing for 
quantitative SNP–NKA level association. All 
NKA levels and the measured naphthalene 
dermal exposure levels were log-transformed. 
An additive model was used, and each SNP 
genotype was coded as 0, 1, or 2 for noncar-
riers, heterozygous carriers, and homozygous 
carriers of the minor allele, respectively; in this 
way, the mean value of the biomarker level 
increases with the variant allele frequency. We 
investigated SNP associations using candidate-
gene analysis (CGA) and genome-wide analy-
sis (GWA) approaches, controlling for other 
important covariates. SNPs highly associated 
with each corresponding adduct level were 
selected as potential independent variables in 
the exposure assessment model to estimate 
interindividual genetic contribution relative 
to other significant personal and workplace 
covariates.

Determination of covariates. SNP asso-
ciation analysis was performed by control-
ling for personal and workplace factors that 
were significant predictors of the measured 
levels of NKAs. To accomplish this, we 
developed multiple linear regression models 
(MLRMs) using SAS, which included dermal 

naphthalene level and significant personal and 
workplace factors (α = 0.1). The general form 
of a MLRM is 

,Y X C0
1

i i q
q

Q

iq ib b c f= + + +
=
/  [1]

where Yi represents the natural log of the 
NKA level of the ith worker; Xi represents the 
natural log of the dermal naphthalene level for 
the ith worker; Ciq represents the qth covari-
ate value for the ith worker (i.e., personal and 
workplace factors); β and γq represent the 
regression coefficients for the dermal naph-
thalene level and qth covariate, respectively; 
β0 is the intercept; and εi is the random error 
for the ith worker.

We used STEPWISE model selection in 
PROC REG (SAS) to determine regression 
model 1, using dermal naphthalene level and 
other covariates as potential independent 
variables. Only naphthalene through dermal 
exposure can induce formation of NKAs in 
the skin (i.e., these adducts are route-specific 
indicators of exposure; inhalation exposure will 
not contribute to NKA formation). Possible 
collinearity problems were investigated using 
eigenvalue analyses and variance inflation 
factors. Possible outliers were examined using 
studentized residuals. Residual analysis was 
performed to check if the fitted models met all 
assumptions.

SNP association analyses. Because per-
sonal and workplace factors can influence asso-
ciation between SNPs and skin NKA levels, 
associations were estimated by controlling for 
the covariates determined in model 1. PLINK 
allows for multiple covariates when testing for 
a quantitative trait using linear models. The 
general form of the linear model in PLINK is 

,mY X C S0
1

i i q
q

Q

iq g ig ib b c f= + + + +
=
/  [2]

where Sig represents the gth tested SNP type 
for the ith worker as individual genetic data, 
and λg represents the coefficient for gth SNP. 
Everything else remained as in model 1. One 
SNP association was tested at a time control-
ling for covariates using model 2.

We first conducted a focused NKA CGA 
to identify SNPs associated with specific 
genes. Candidate genes were selected based 
on published known or suspected functional 
and/or regulatory roles in the metabolism 
and toxicokinetics of naphthalene and/or 
polyaromatic hydrocarbons (PAHs) [for the 
list of 35 candidate genes, see Supplemental 
Material, Table 1 (http://dx.doi.org/10.1289/
ehp.1104304)]. SNPs related to candidate 
genes were obtained from the Affymetrix data-
base (Affymetrix 2009). Because SNPs may be 
associated with more than one candidate gene, 
and some SNPs were excluded by the data-
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cleaning procedure, 498 SNPs were used in 
the CGAs. Each SNP genotype was individu-
ally tested for its association with NKA level 
under model 2.

GWA was performed to identify SNPs 
significantly associated with NKA levels with-
out a priori evidence of potential association, 
regardless of mechanism. Specifically, each 
SNP genotype was tested for association across 
individual genomes using model 2. To adjust 
for multiple comparisons, empirical p-values 
were calculated using the max(T) permuta-
tion approach implemented in PLINK for 
both CGA and GWA (n = 10,000 permuta-
tions each). The overall level of significance 
was 0.1. Genome-wide p-value against SNP 
physical position (by chromosome) genome 
plots were generated using the gap package in 
R, version 2.7.2 (Zhao 2007). The goal was 
to identify SNPs that were most significantly 
associated with skin NKA levels for inclusion 
in a final exposure model that incorporated 
other predictors of exposure.

Exposure modeling. To investigate the 
genetic predictors of population variance 
in individual NKA biomarker levels, we 
estimated the contribution of individual SNP 
markers in addition to personal (e.g., dermal 
exposure, personal protection, smoking) and 
workplace (e.g., job, task, work environment) 
factors. The MLRMs were developed using 
SAS, and the significance was evaluated at 
α = 0.1 because of the number of uncontrolled 
variables affecting biomonitoring. The general 
form of MLRM was modified to

 ,mY X C S0
1 1

i i q
q

Q

iq g ig
g

G

ib b c f= + + + +
= =
/ /

 [3]

where G denotes the number of SNPs identified 
as significant through CGA or GWA and Sig is 
the genotype of the gth significant SNP with 
corresponding coefficient λg. All other param-
eters are as previously defined. Significant SNPs 
and covariates were selected as potential inde-
pendent variables. STEPWISE selection was 
used in PROC REG to determine regression 
model 3, and model analysis was performed 
using the methods described for model 1.

The relative contribution of each predictor 
in the final regression models was determined 
by its proportionate contribution to the regres-
sion model R2 using the Pratt index, which 
is the product of the estimated standardized 
regression coefficient and the simple correla-
tion between that predictor and the outcome 
variable (Chao et al. 2008; Pratt 1987). The 
relative contribution considered in this study 
was the dispersion importance (i.e., the pro-
portion of the variance in the outcome vari-
able accounted for by each predictor in the 
regression model).

Bioinformatic analysis of highly associ-
ated SNPs and network interactions. We 
investigated all SNPs that were significantly 
associated with NKA levels; the curated 
sequence identification, location, and gene 
ontology were established using Entrez Gene 
(http://www.ncbi.nlm.nih.gov/snp) (Maglott 
et al. 2005), Ensembl BioMart (http://www.
biomart.org) (Flicek et al. 2011), and/or 
UCSC Genome Browser (http://genome.ucsc.
edu) (Fujita et al. 2011). Interactions between 
genes related to SNPs that predicted NKA 
levels were tested for statistical significance by 
MetaCore™ integrated knowledge database 
(http://www.genego.com/metacore.php) and 
software suite for network/pathway analysis 
using the proprietary database of hand-curated 
peer-reviewed literature and statistical analysis 
of network interactions (Brennan et al. 2009; 
Chang 2009; Thomson Reuters 2010). The 
predicted subnetworks associated with the 
highest-ranked p-value for SNP-TNKA were 
determined using the highest trust set using 
the most probable linear binary protein inter-
actions (i.e., verified through experimental 
validation). Highly relevant identified gene 
functions were corroborated by further litera-
ture analysis of the predicted associations [for-
mula available from MetaCore™ (Thomson 
Reuters 2010)].

Results
Study population and exposure measurements. 
After data cleaning, 184,153 SNPs and 
102 workers were available for association 
analyses. The workers included 94 males 
(92.2%) and 8 females (7.8%), of whom 
89 were Caucasians (87.3%), 13 were non-
Caucasians (African American, Hispanic, 
or Asian; 12.7%), and 45 were smokers 
(44.1%). The mean ± SD age of the workers 
was 24.6 ± 5.0 years, and ages ranged from 
18 to 40 years.

The geometric mean (GM) and geometric 
SD (GSD) of the dermal naphthalene levels 
were 1,556 and 8.6 ng/m2, with a range of 
100 ng/m2 to 5,090 μg/m2. Both 1NKA 
and 2NKA were detected in the tape-strip 
samples at levels of 0.27–6.4 pmol/μg keratin. 
The GM (GSD) for 1NKA, 2NKA, and 
TNKA levels were 0.7 (1.5), 2.1 (1.5), and 
2.8 (1.5) pmol/μg keratin, respectively. The 
1NKA GM level was significantly different 
(p < 0.0001) from that of 2NKA. Dermal 
exposure, exposure time, age, ethnicity, and 
the replacing foam task were significantly 
associated with 2NKA and TNKA levels [all, 
p < 0.094; see Supplemental Material, Table 2 
(http://dx.doi.org/10.1289/ehp.1104304)]. 
In addition, smoking, but not ethnicity, 
was significantly associated with 1NKA 
level (p < 0.086; see Supplemental Material, 
Table 2). Therefore, the final CGA and 
GWA models for 2NKA and TNKA levels 

included age, exposure time, dermal exposure, 
ethnicity, and the replacing foam task, 
whereas ethnicity was replaced with smoking 
status in the final models for 1NKA. Because 
of missing exposure-time information for two 
subjects, 100 subjects were included in the 
CGA and GWA models.

Candidate-gene analysis. One SNP 
(rs4852279; MAF = 0.451) related to cyto-
chrome P450, family 26, subfamily B, 
polypeptide 1 (CYP26B1) was significantly 
associated with 2NKA level (permutation 
adjusted p = 0.0449). No SNP associated with 
any candidate gene [see Supplemental Material, 
Table  2 (http://dx.doi .org/10.1289/
ehp.1104304)] was significantly associated with 
1NKA or TNKA levels. In the MLRM model, 
SNP rs4852279 (associated with CYP26B1) 
and five covariates (i.e., dermal exposure, expo-
sure time, task replacing foam, age, and ethnic-
ity) were significant predictors of 2NKA level.

Genome-wide analysis. No single SNP 
reached genome-wide significance for asso-
ciation with NKA biomarkers (at α = 
0.1/184,000, p = 5.4 × 10–7) [see Supplemental 
Material, Figure 1 (http://dx.doi.org/10.1289/
ehp.1104304)]. The SNPs that were most 
significant for 1NKA, 2NKA, and TNKA 
levels were rs2286321 (p = 1.20 × 10–5), 
rs11889897 (p = 1.05 × 10–5), and rs4971689 
(p = 1.75 × 10–5), respectively. The locations 
and the patterns of significant SNPs associ-
ated with skin NKA levels varied for each 
adduct type.

Ten SNPs with the lowest unadjusted 
p-values for each of the three NKAs were 
tested, along with corresponding significant 
covariates, to estimate their effect and relative 
contributions to the measured level of each 
NKA using MLRM. In the final models, six, 
five, and five SNPs were retained as significant 
predictors for 1NKA, 2NKA, and TNKA, 
respectively (Table 1). These final models 
explained 66%, 72%, and 73% of the total 
variation in the 1NKA, 2NKA, and TNKA 
levels, respectively, for the covariates tested.

Bioinformatics. Of the 16 SNPs highly 
associated with NKA levels identified by 
GWA and MLRM analyses, 4 were associated 
with the same sequence, leaving 12 SNPs that 
were unique genic or intergenic sequences 
(Table 2). Eight of these 12 highly associ-
ated SNPs were within or proximate to 
known genes {ADD3 [adducin 3 (gamma)], 
CD47 (CD47 molecule), RPS6KA2 (ribo-
somal protein S6 kinase, 90kDa, polypep-
tide 2), KLF6 (Kruppel-like factor 6), PARK2 
[parkinson protein 2, E3 ubiquitin protein 
ligase (parkin)], MSRA (methionine sulfox-
ide reductase A), NRSN1 (neurensin 1), and 
NRXN1 (neurexin 1)} that likely interact 
through three networks (Figure 1) predicted 
by multiple binary protein–protein interac-
tions as statistically associated in the curated 
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published literature (Brennan et al. 2009; 
Chang 2009; Thomson Reuters 2010). None 
of the three predicted subnetworks were asso-
ciated with any known canonical pathway.

The first predicted network involves CD47, 
RPS6KA2, KLF6, and MSRA (Figure 1A), 

which are associated with the positive regu-
lation of cellular and biological processes, 
chemical homeostasis, regulation of biological 
quality, and homeostasis (p = 3.01 × 10–19). 
In the second predicted pathway (Figure 1B), 
ADD3, along with MSRA and CD47, may also 

interact independently with APOA1 (apolipo-
protein A-1) and CAV1 (caveolin 1, caveolae 
protein, 22kDa) to regulate biological quality, 
homeostasis, cellular components of move-
ment, positive regulation of biological process, 
and response to stimuli (p = 2.09 × 10–15). In 
the third pathway (Figure 1C), NRXN1 and 
NRSN1 are associated with neuron differen-
tiation, negative regulation of cell cycle, axon 
guidance, synapse assembly, and generation of 
neurons in the published literature.

The remaining four SNPs are in or proxi-
mate to genes {SNED1 (sushi, nidogen and 
EGF-like domains 1), TMEM132C (trans-
membrane protein 132C), WDPCP (WD 
repeat containing planar cell polarity effec-
tor), ZNF536 (zinc finger protein 536), and 
TAF2GL [TAF9 RNA polymerase II, TATA 
box binding protein (TBP)-associated factor, 
32kDa pseudogene 3; TAF9P3]} that were 
not predicted from the curated literature to 
interact within any predicted networks, and 
none has known relevant function in skin or 
appears to be a structural protein integral to 
cell or basement membranes. For detailed 
discussion of the bioinformatic analyses, see 
Supplemental Material, pp. 8–10 (http://
dx.doi.org/10.1289/ehp.1104304). 

Discussion
An individual’s quantitative NKA level can 
be treated as an intermediate phenotype to 
provide increased power to detect quantita-
tive associations in well-defined populations 
exposed to naphthalene. Our goal was to 
investigate and identify SNPs associated with 
NKA biomarker levels for use in exposure 
assessment models.

In the CGA approach, we identified one 
SNP related to CYP26B1 that was significantly 
associated with 2NKA level. CYP26B1 function 
is involved in the regulation of all-trans-
retinoic acid (RA), which regulates epidermal 
proliferation and differentiation, keratinocyte 
proliferation, and epidermal hyperplasia 
(Giltaire et al. 2009). RA is the only recognized 
substrate of CYP26B1 detected in human 
skin (Ray et al. 1997), and it has been shown 
to inhibit KRT10 (keratin 10) mRNA and 
protein expression in epidermal keratinocytes 
in vitro (Poumay et al. 1999). Variation in 
CYP26B1 expression may influence RA levels 
in the skin leading to differences in KRT10 
protein expression and thus may affect the skin 
NKA levels observed in the present study. 

The CGA approach may be limited because 
of probe selection in the Affymetrix StyI array. 
Among 498 SNPs associated with candidate 
genes, only 9 were located within exons 
{CYP1A2, ARNT2 (aryl-hydrocarbon receptor 
nuclear translocator 2), EPHX1 [epoxide 
hydrolase 1, microsomal (xenobiotic)], 
EPHX2, CYP26B1, GSTM3 (glutathione 
S-transferase mu 3 (brain)], and CYP4B1} and 

Table 1. Regression models for skin NKA levels measured in fuel-cell maintenance workers using GWA.

Adduct/predictor
Parameter 
estimate SE p-Value

Relative 
contribution (%)

1NKA (n = 90; R2 = 0.665)
Intercept –0.821 0.297 0.007
Exposure time 0.002 0.001 0.014 6.71
Dermal exposure –0.029 0.014 0.037 0.34
Replace foam 0.325 0.068 < 0.0001 22.49
Age –0.016 0.006 0.009 3.56
Smoking 0.156 0.059 0.010 2.58
rs33977056 0.141 0.047 0.003 13.36
rs2000753 –0.177 0.056 0.002 11.63
rs3799570 0.161 0.058 0.007 10.49
rs1329508 0.103 0.048 0.035 10.10
rs2286321 0.127 0.052 0.016 9.71
rs10413028 0.145 0.057 0.013 9.02

2NKA (n = 87; R2 = 0.721)
Intercept 0.783 0.239 0.002
Exposure time 0.004 0.001 < 0.0001 28.65
Dermal exposure –0.061 0.013 < 0.0001 3.90
Replace foam 0.105 0.060 0.084 4.90
Age –0.016 0.005 0.003 4.66
Ethnicity –0.156 0.069 0.026 2.74
rs11251918 0.196 0.047 < 0.0001 14.10
rs9835822 –0.135 0.040 0.001 13.97
rs6486693 –0.107 0.038 0.007 11.40
rs4971689 0.159 0.043 0.0004 11.37
rs9295589 –0.098 0.047 0.039 4.30

TNKA (n = 83; R2 = 0.729)
Intercept 0.831 0.238 0.001
Exposure time 0.005 0.001 < 0.0001 39.65
Dermal exposure –0.066 0.012 < 0.0001 2.13
Replace foam 0.100 0.055 0.075 4.87
Age –0.021 0.005 < 0.0001 5.52
Ethnicity –0.192 0.064 0.004 2.59
rs1962392 –0.135 0.036 0.0004 12.03
rs11251918 0.171 0.044 0.0002 11.50
rs4971689 0.145 0.040 0.001 10.43
rs3799570 0.128 0.043 0.004 6.17
rs9295589 –0.122 0.042 0.004 5.11

Table 2. SNP variants and genes associated with the skin NKA levels and the significant covariates 
affecting naphthalene exposure in the fuel-cell maintenance workers as identified by GWA and multiple 
linear regression models.

Chromosome
Build 37.1 
position SNP Alleles

Associated 
genes MAF

GWA p-value 
(× 10–5)

2p14 63597786 rs33977056 A/G WDPCP 0.208 2.24
2p16.3 50775436 rs4971689 C/G NRXN1 0.292 2.76
2q37 241653539 rs2286321 A/G SNED1 0.222 4.19
3p13.1 109214614 rs9835822 C/T BBX, CD47 0.293 1.83
6p22 23553309 rs9295589 A/G RPL6P18, NRSN1 0.223 6.88
6q26 162672040 rs2000753 C/T PARK2 0.266 2.79
6q27 166950610 rs3799570 C/T RPS6KA2 0.162 3.23
8p23.1 10299783 rs1962392 C/G MSRA 0.302 5.80
10p15 3535288 rs11251918 G/T PITRM1, KLF6 0.138 5.29
10q25.1 110184413 rs1329508 A/G SORCS, ADD3 0.358 7.26
12q24.32 127551455 rs6486693 C/T TMEM132C 0.470 9.03
19q12 27148774 rs10413028 A/G ZNF536, TAF2GL 0.172 5.34
Abbreviations: BBX, bobby sox homolog (Drosophila); WDPCP, WD repeat containing planar cell polarity effector; 
PITRM1, pitrilysin metallopeptidase 1; RPL6P18, ribosomal protein L6 pseudogene 18; SNED1, sushi, nidogen and EGF-
like domains 1; SORCS, sortilin-related VPS10 domain containing receptor 3; TAF2GL, TAF9 RNA polymerase II, TATA box 
binding protein (TBP)-associated factor, 32kDa pseudogene 3; TMEM132C, transmembrane protein 132C; ZNF536, zinc 
finger protein 536. 



Naphthyl–keratin adduct–associated SNPs

Environmental Health Perspectives • volume 120 | number 6 | June 2012 861

87 were located within introns. The remaining 
SNPs were within intergenic regions, distal 
to either 5´ or 3´ of potential target genes. 
Even the SNP that is significantly associated 

with 2NKA level (rs4852279) is about 110 kb 
5´ to the CYP26B1 gene body. Furthermore, 
the selection of candidate genes was limited to 
genes known to be involved in the metabolism 

and toxicokinetics of naphthalene and PAHs 
and thus excluded other biological processes 
(e.g., cell proliferation and differentiation, cell 
signaling) that may be critical. Imputation 

z-Score

83.29
p-Value

3.01 × 10–19

Gene ontology processes

Positive regulation of cellular process (69.6%; 
6.52 × 10–17), positive regulation of biological process 
(71.7%; 9.40 × 10–17), chemical homeostasis (39.1%; 
5.92 × 10–13), regulation of biological quality (54.3%; 
6.59 × 10–12), homeostatic process (41.3%; 1.09 × 10–11)

Network

CD47,
RPS6KA2,
KRT12,
KLF6,
MSRA

Pathway

A

z-Score

55.52
p-Value

5.95 × 10–7

Gene ontology processes

Neuron differentiation (47.1%; 3.37 × 10–8), 
negative regulation of cell cycle (29.4%; 9.14 × 10–8), 
axon guidance (29.4%; 2.11 × 10–7), synapse 
assembly  (23.5%; 2.15 × 10–7), generation of 
neurons (47.1%; 3.11 × 10–7)

Network

NRXN1,
NRSN1,
ESR1 (nuclear),
NLGN1,
AHR

Pathway

C

z-Score

70.13
p-Value

2.09 × 10–15

Gene ontology processes

Regulation of biological quality (57.5%; 9.50 × 10–12), 
homeostatic process (42.5%; 7.72 × 10–11), cellular 
component movement (35.0%; 2.27 × 10–10), positive 
regulation of biological process (60.0%; 4.78 × 10–10), 
response to stimulus (75.0%; 5.59 × 10–10)

Network

APOA1, 
CAV1,
CD47,
ADD3,
MSRA

Pathway

B

Figure 1. Three predicted MetaCore™ network interaction pathways (A–C) from 12 polymorphic SNP genetic markers associated with the skin NKA levels mea-
sured in the fuel-cell maintenance workers. Abbreviations: AHR, aryl hydrocarbon receptor; APOA1, apolipoprotein A-1; CAV1, caveolin 1, caveolae protein, 
22kDa; ESR1, estrogen receptor 1; KRT12, keratin 12; NLGN1, neuroligin 1. 
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from the HapMap panel (Collins 2009) 
could be applied to provide a route to testing 
additional SNPs without further genotyping; 
this would potentially improve the fine 
mapping resolution in candidate regions. 

The StyI array employed a SNP set based 
on linkage-disequilibrium patterns that 
supported approximately one-sixth genome 
coverage of the base-pair positions across all the 
chromosomes rather than coverage of known 
genes in particular pathways or networks. 
Thus, SNP assignment to genes and pathways 
is inherently difficult, but not impossible, in a 
reiterative approach and strategy as described 
here. In this context, the SNPs statistically 
associated with NKA level, as a polymorphic 
genetic biomarker, do not infer the functional 
basis for the SNP–phenotype association. Thus, 
genetic, epistatic, epigenetic, and/or noncoding 
RNA gene regulation interactions that may be 
associated with individual variation in NKA 
levels observed along with other predictors 
of naphthalene exposure are not excluded in 
establishing the predicted networks from the 
published curated data. Although the GWA 
results did not identify SNPs associated with 
NKA levels at the genome-wide significance 
level, three biologically plausible networks 
were predicted using SNPs identified by 
our strategy. An association test for a single 
SNP has limited utility and is insufficient to 
disclose the complex genetic structure of many 
intermediate phenotypes or diseases among 
naphthalene-exposed subjects. Diseases often 
arise from the joint action of multiple loci 
within a genetic structure or joint action of 
multiple genes within a pathway (Luo et al. 
2010). Although each single SNP may be 
associated with only a small effect or disease 
risk, the joint action of multiple SNP-
associated loci is likely to have significant risk 
effects. The predicted pathway and networks 
show that the identified SNP-associated 
genes are not independent but may interact 
with each other through biological processes 
that may contribute to the NKA levels. The 
significant SNP variants we identified are 
highly associated with the regulation of cellular 
processes and homeostasis and may contribute 
to differences in levels of targets for adduction 
by naphthalene electrophilic metabolites. Thus, 
we have shown that genetic variants and their 
potential role on biological functions may 
affect biomarker levels in naphthalene-exposed 
workers. These plausible genetic associations 
must be replicated and their biological 
functions validated.

In genome-wide association studies 
(GWAS), the genome-wide significance 
threshold is stringent, and few SNPs exceed 
the statistical requirement; genetic markers 
that do not equal or exceed this conservative 
threshold are generally ignored or neglected 
unless the biological plausibility is very strong. 

We used a high threshold level of genome-wide 
significance (i.e., 5.4 × 10–7) to protect against 
false-positive findings caused by multiple 
testing (O’Berg 1980; Risch and Merikangas 
1996; Wolff et al. 1993). Meanwhile, it 
also necessitates careful consideration of the 
power to detect the effect size in the GWAS. 
For nearly all gene regions conclusively 
identified by GWAS, the per-allele effect sizes 
estimated are odds ratios < 1.5 (Hindorff 
et al. 2009). The variant alleles observed are 
usually common, and each allele is estimated 
to confer a small contribution to the overall 
effect. The mechanism by which these genetic 
variations affect the phenotype is not clear (Lee 
et al. 2006; Rioux et al. 2001; Yue and Moult 
2006). By ranking the 10 SNPs with the lowest 
p‑values for each NKA biomarker in PLINK, 
we were able to construct final exposure models 
and investigate the contributions of multiple 
SNPs using MLRM. Furthermore, analysis of 
predicted networks may minimize false-positive 
findings without missing important pathways 
due to a mandated stringent threshold. The 
statistical test for predicting networks, 
based on protein–protein or protein–gene 
interactions in the curated literature, treats each  
SNP/gene candidate as a sampling unit, instead 
of the individual within the sample population 
from which it was identified. Thus, the results 
are generalized to the sample of genes rather 
than to a new sample of individuals that may 
harbor those same alleles. Nonetheless, this 
approach provides a strategy for identifying and 
stratifying gene alleles for functional validation 
through molecular biology/reverse genetics 
and/or further sampling and testing in a other 
populations of exposed individuals.

Environmental factor contributions have 
been elusive in GWAS (Vineis et al. 2009). 
Further, the linear modeling framework in 
GWAS does not provide for robust analy-
sis of the genomic and environmental factors 
(Moore et al. 2010), and there is no standard 
method for gene–environment interaction 
in GWAS. Identifying gene–environment 
interactions will be difficult in GWAS case–
control studies given the paucity of exposure 
assessment in large multicenter epidemiologi-
cal studies. Environmental exposure is more 
prevalent and is assessed with greater quantita-
tive accuracy in a well-characterized sample 
population than in population or hospital-
based case–control studies commonly used in 
GWAS performed to date (Vlaanderen et al. 
2010). Both environmental and genetic com-
ponent contributions may vary depending on 
the quantitative nature of the intermediate 
phenotype or disease. Identification of the sig-
nificant contributing factors (environmental 
and genetic) to a phenotype is necessary to 
explain the population variance. Practically, 
we may only be able to determine the greatest 
size effects in small, well-defined populations. 

Genetic and epigenetic factors present in a 
population may have significant size effects 
that include heritable variation in traits that 
may not be directly associated with expo-
sure. For example, heritable differences in 
blood pressure (essential hypertension) and 
respiratory rate and capacity may influence 
the absorption, distribution, and clearance 
of metabolites (biomarkers) and have effects 
greater than do xenobiotic metabolism and 
toxicokinetics in skin.

Allele frequency differences in an admixed 
population in an association study can 
bias results. Because this study population 
was not homogeneous, we investigated self-
reported ethnicity to determine whether 
it contributes to skin NKA levels. The 
MLRM results showed that ethnicity was 
significant only for 2NKA and TNKA levels 
but not for the 1NKA level. Therefore, in 
the SNP association test, we controlled for 
ethnicity only for 2NKA and TNKA levels 
and not for the 1NKA level. We evaluated 
genome-wide and quantile–quantile plots of 
association results for individual SNPs with 
skin NKA levels [see Supplemental Material, 
Figures 1 and 2 (http://dx.doi.org/10.1289/
ehp.1104304)]. We observed no significant 
deviation from the expected distribution of 
p‑values of the tests for all SNPs. In addition, 
we performed principal component analysis 
and eigenvalue analysis (Patterson et al. 2006; 
Price et al. 2006), which showed that the 
population structure corresponded well with 
the self-reported ethnicity (see Supplemental 
Material, Figure 3). In the quantile–quantile 
plots, correlations approaching normality may 
hide substructures that confound outcome or, 
alternatively, deviations from normality may 
suggest substructure differences that may not 
actually exist, which can often be corrected 
(Voorman et al. 2011). We speculate that this 
apparent contradiction in quantile–quantile 
plots and principal component analysis may 
be due to our small sample population (i.e., 
low power) and/or a low-density SNP set 
based on physical coverage with low linkage 
disequilibrium.

The sample size for our study was very 
small compared with an average GWAS case–
control study aimed to map variants associ-
ated with a disease. The small effect size of 
disease traits requires a large sample size to 
gain statistical power. This study population 
was well defined for the specific intrinsic and 
extrinsic factors measured. Furthermore, we 
used intermediate phenotypes rather than 
binary disease status, which is more objective 
(less misclassification) and more informative 
and can increase statistical power severalfold 
(Potkin et al. 2009).

In the models presented here, the num-
ber of parameters is likely to be large relative 
to the population sample size because we 



Naphthyl–keratin adduct–associated SNPs

Environmental Health Perspectives • volume 120 | number 6 | June 2012 863

used the 10 SNPs with the lowest p‑value for 
each intermediate phenotype (NKA level) to 
establish the final MLRM. Therefore, the R2 
of the model may be increased. In addition, 
the naive estimators (from the model) of the 
effect size of the variants may overestimate 
the true effect size due to “winner’s curse” 
(Xiao and Boehnke 2011). In GWAS, this 
bias is increased by the use of stringent selec-
tion thresholds and ranking large numbers 
of SNPs. Genetic effect-size estimates are 
usually focused only on the variants showing 
significant evidence for an SNP–quantitative 
trait association. This may result in effect-size 
estimates that are upward biased (referred 
to as “ascertainment bias”); this is caused by 
ascertaining only those samples that result in 
genetic loci with evidence of significant asso-
ciation. Xiao and Boehnke (2011) showed 
that the winner’s curse affects the estimator of 
the coefficient of determination R2 in the con-
text of quantitative association. Proportional 
bias of R2 was large when power was low, and 
it decreased when the power increased. Thus, 
the variation explained and the relative contri-
bution of SNPs based on the R2 of the model 
may be inflated; therefore, our results should 
be interpreted with caution.

I n  s u m m a r y ,  i n  a  G W A  w i t h 
approximately 184,000 SNPs tested, 1,800 of 
these SNPs may be either false positive or false 
negative. By using multiple levels of testing for 
significance of association, we aimed to reduce 
the risk of selecting false positives by further 
testing groups of highly associated candidate 
genes by testing for gene–gene interactions 
in the curated literature that may lead to 
more refined analysis in replicate populations. 
We found three predicted networks that 
may be associated with these SNP variants 
and NKA biomarkers of exposure. The SNP 
variant associate genes and their products 
may be highly associated with a) regulation 
of cellular processes and homeostasis that alter 
the NKA biomarker levels, or b) adduction at 
cysteine residues by naphthalene metabolites. 
Also, another potential strategy is a two-stage 
design and independent replication of samples 
to confirm study findings (Collins 2009). 
However, replication is not easily achievable 
because populations are likely exposed to very 
different levels and mixtures of environmental 
toxicants (Vineis et al. 2009). Finally, the 
present study may be regarded as a discovery 
approach that can generate new hypotheses 
for plausible biological functions of potential 
genetic factors that affect exposure biomarker 
levels. Ultimately, only independent replication 
of these studies with increased sample size 
and/or functional validation of the candidate 
gene allelic variants will provide proof.

Conclusions
We demonstrated a strategy to investigate 
the role of individual genetic variation in 
quantitative assessment of biomarkers of 
exposure in a well-characterized population 
of exposed individuals. Biomarker levels can 
be used as intermediate quantitative trait 
phenotypes when investigating association 
between dose–response relationship and 
individual exposure that may affect toxicity and 
disease outcomes. Thus, individual genome-
wide variation should be accounted for in future 
genetic epidemiology and exposure assessment 
studies that use biomarkers of exposure  
and/or effect. This knowledge will a) increase 
our understanding of the exposure dose–
effect relationships and improve exposure 
classification in epidemiology studies by 
reducing uncertainty in biomarker of exposure 
and/or early biological effect classification; 
b) help identify potential susceptible 
subpopulations with respect to exposure; and 
c) provide useful input in setting exposure limits 
by taking into account individual variations. 
Investigation of the predicted interactions 
between environment (extrinsic), individual 
genetic variation (intrinsic), and the biological 
outcome (phenotype) in occupational exposure 
studies as described here may provide an 
effective strategy and approach to identify 
human gene–environment interactions.
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